Red rot resistant transgenic sugarcane developed through expression of β-1,3-glucanase gene
نویسندگان
چکیده
Sugarcane (Saccharum spp.) is a commercially important crop, vulnerable to fungal disease red rot caused by Colletotrichum falcatum Went. The pathogen attacks sucrose accumulating parenchyma cells of cane stalk leading to severe losses in cane yield and sugar recovery. We report development of red rot resistant transgenic sugarcane through expression of β-1,3-glucanase gene from Trichoderma spp. The transgene integration and its expression were confirmed by quantitative reverse transcription-PCR in first clonal generation raised from T0 plants revealing up to 4.4-fold higher expression, in comparison to non-transgenic sugarcane. Bioassay of transgenic plants with two virulent C. falcatum pathotypes, Cf 08 and Cf 09 causing red rot disease demonstrated that some plants were resistant to Cf 08 and moderately resistant to Cf 09. The electron micrographs of sucrose storing stalk parenchyma cells from these plants displayed characteristic sucrose-filled cells inhibiting Cf 08 hyphae and lysis of Cf 09 hyphae; in contrast, the cells of susceptible plants were sucrose depleted and prone to both the pathotypes. The transgene expression was up-regulated (up to 2.0-fold in leaves and 5.0-fold in roots) after infection, as compared to before infection in resistant plants. The transgene was successfully transmitted to second clonal generation raised from resistant transgenic plants. β-1,3-glucanase protein structural model revealed that active sites Glutamate 628 and Aspartate 569 of the catalytic domain acted as proton donor and nucleophile having role in cleaving β-1,3-glycosidic bonds and pathogen hyphal lysis.
منابع مشابه
Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity
BACKGROUND Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic lin...
متن کاملIsolation and Characterization of ScGluD2, a New Sugarcane beta-1,3-Glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses
Beta-1,3-glucanases (EC 3.2.1.39), commonly known as pathogenesis-related (PR) proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ...
متن کاملTransformation of Potato (Solanum tuberosumcv.Savalan) by Chitinase and β-1,3-Glucanase Genes of Myco-Parasitic Fungi Towards Improving Resistance to Rhizoctonia solani AG-3
Potato (Solanum tuberosum L.) an agro-economically important food crop in the world, is sensitive to many fungal pathogens including Rhizoctonia solani (AG-3), the causal agent of stem and root rot diseases. Chitinase and glucanase are cell wall degrading enzymes which have been shown to have high antifungal activity against a wide range of phytopathogenic fungi. In the present study, plasmid p...
متن کاملOverexpression of an Acidic Endo-β-1,3-1,4-glucanase in Transgenic Maize Seed for Direct Utilization in Animal Feed
BACKGROUND Incorporation of exogenous glucanase into animal feed is common practice to remove glucan, one of the anti-nutritional factors, for efficient nutrition absorption. The acidic endo-β-1,3-1,4-glucanase (Bgl7A) from Bispora sp. MEY-1 has excellent properties and represents a potential enzyme supplement to animal feed. METHODOLOGY/PRINCIPAL FINDINGS Here we successfully developed a tra...
متن کاملCharacterization of Resistance Gene Analog Polymorphisms in sugarcane cultivars with varying levels of red rot resistance
Resistance Gene Analog (RGA) strategy is being exploited perfectly for the identification, tagging and mapping of major genes or Quantitative Trait Loci for disease resistance. About 29 RGA primers designed from the conserved domains of resistance proteins, were used to analyse the genetic diversity among the 40 sugarcane cultivars that vary in their resistance to red rot disease. The genetic s...
متن کامل